
	/blog/devlogs/cascadia

	Cascadia 0.1

	Learning Rust to develop my dream game!

	November 3, 2023 · #cascadia #gamedev #rust

	

	This first devlog concludes the test phase of Cascadia, my survival[1] sandbox game!

Download Pre-Alpha 0.1 and give it a try [image: 💜]

[image: ]

Features


	Placing and breaking blocks

	10 blocks

	Bedrock

	Stone

	Dirt

	Grass

	Logs

	Leaves

	Planks

	Bricks

	Sand

	Glass





	Randomly generated 256×64×256 world

	Cliffs

	Trees

	Sand traps

	Caves





	Physics

	Lighting





Cascadia's test phase of development spanned from September 21st to November 3rd, with a 3 week break between October 1st and October 23rd due to college. (If you're bad at math, that's 21 days!)

It saw a few architectural changes before settling on a bespoke game engine written in Rust, using winit for window creation and input handling and wgpu for graphics.

So let's take a trip down memory lane, shall we?

Pre-wgpu

Not knowing where to start, Kett recommended that I try raylib, a C library for game programming. I found a binding for Rust and made this simple test scene using raylib's built-in draw functions.

[image: ]

I then figured out how to texture those cubes!

[image: ]

But I was having a lot of trouble trying to figure out what the Rust bindings for raylib were. Raylib has plenty of examples on their website, but they were only for C. So I gave up and switched to Bevy, a data-driven game engine built in Rust.

[image: ]

Bevy uses an Entity Component System (ECS) pattern where entities are blank slates that you attach components to and process with systems. It's a pretty novel idea to me, and it seems to be quite popular in Rust and gaining traction outside of it too.

But Bevy's ham-fisted approach to treating everything as an ECS—including UI—just rubbed me the wrong way. I needed to find something better.

Seeing that Bevy used wgpu for its graphics, a low-level cross-platform graphics API, I found a wgpu tutorial for creating a render pipeline from scratch. For the next 3 days I poured hours reading, learning, and writing low-level graphics.

I really hoped this would be worth the effort.

wgpu

[image: ]

I was quite exhilarated with what I had made, my very own render pipeline! From scratch! Without using a game engine!

But the future still felt uncertain to me as I didn't know how much steam I would have to continue working at such a low level, nor if I would be able to find enough resources and tutorials online to know what to do next.

And count my lucky stars, because I found a different tutorial that cleaned up and expanded upon the previous wgpu tutorial! (Which left me with a monolithic file with nearly a thousand lines of code)

With a much more readable source code, I felt invigorated to continue toiling away and implemented raycasting, allowing me to place and break blocks for the first time!

[image: ]

I was still rendering individually instanced cubes which wasn't going to work in the long-term, so I got to work on mesh generation. Here is the very first mesh I generated.

[image: ]

I then rendered square faces proper…

[image: ]

…culled hidden faces…

[image: ]

…and added the rest of the faces! This is a view from inside the mesh.

[image: ]

Vertex data

Soon after I integrated texture array support into the render pipeline and rendered grass!

I wanted to use texture arrays instead of a texture sheet because it would be easier to set up. Instead of calculating the correct UVs for a given texture, I just pass a texture index to the shader.

With this index-first approach, I could even make animated textures super easy to implement in the future.

[image: ]

And with my newfound knowledge of the render pipeline and the vertex buffer data, I added lighting data to the vertices to give blocks some contrast lighting.

[image: ]

Adding shadows was pretty easy too using the same vertex light data queried from a light array I added to the chunk.

[image: ]

Chunks

The next step was to have more than one chunk. This was going to have a few challenges, namely getting lighting to work properly across chunks, and to cull the faces of blocks between chunks, but for now I put those problems off for later.

[image: ]

With the ability to place different blocks now, I made the first dirt house in Cascadia.

[image: ]

I then added some new blocks that needed their own rendering code. Glass and leaves are both transparent, but leaves fully render to neighboring leaves for a neat layering effect. Logs were the first block to use multiple textures.

[image: ]

[image: ]

Here's a gratuity shot of 64,000 chunks being rendered at once :3

[image: ]

Although I don't have footage of it, this test version marked the inclusion of the first iteration of physics! (Which unbeknownst to me would haunt me for a week as I pulled my hair out trying to fix numerous collision bugs)

[image: ]

Terrain generation

Here's the first version with naturally generated trees! Yeah they're pretty silly looking.

[image: ]

Lighting has returned along with some new terrain generation!

[image: ]

I sprited a new font for Cascadia, and using a distance fog[2] tutorial meant for glsl shaders, I was able to translate it into wgsl, the shading language that wgpu uses.

[image: ]

Another terrain generation change to include more varied terrain such as cliffs.

[image: ]

And finally, I vanquished the last collision bug. There were few edge cases where you could phase through the edge of a block, and this video was me testing those.

[image: ]

Postmortem

Whew, that was a lot of progress in a short span of time! And in that time I learned a lot, from programming in Rust (gotta love that borrow checker) to writing low-level graphics with wgpu.

I'm genuinely thrilled with what I have made so far, and I'm excited to continue working on Cascadia to make it my dream game!





	I know there isn't any survival mechanics yet, but those will come soon! ↩︎



	The fog is coming the fog is coming the fog is coming ↩︎







	[image: signature that says "Chai"]

OEBPS/images/22.jpg





OEBPS/images/signature.png





OEBPS/images/10.jpg





OEBPS/images/11.jpg





OEBPS/images/12.jpg





OEBPS/images/13.jpg





OEBPS/images/14.jpg





OEBPS/images/15.jpg





OEBPS/images/16.jpg
i
(728

122






OEBPS/images/17.jpg





OEBPS/images/18.jpg
Test 0.0.15
139
bedrock






OEBPS/images/19.jpg





OEBPS/images/1.jpg
B0 FPS
Yoxel Test 001






OEBPS/images/2.jpg
pelunk Game

Test 0.02






OEBPS/images/3.jpg





OEBPS/images/4.jpg





OEBPS/images/6.jpg





OEBPS/images/7.jpg
Test 0.0.7

%mﬂmnﬂ
mﬂﬁ e
i u‘—tmf%""
4 A

2l

V i A L ﬂ'
M‘ ’ ;k:;’ , 3‘}5 ,,’:
tl 7 ' l

25





OEBPS/images/8.jpg
QL






OEBPS/images/9.jpg





OEBPS/images/20.jpg
Test 0.0.16
100
bedrock






OEBPS/images/21.jpg





